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Local patrticle flux reversal under strongly sheared flow
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The advection of electron density by turbuledeXB flow with linearly varying mean yields a
particle flux that can reverse sign at certain locations along the direction of magnetic shear. The
effect, calculated for strong flow sheatr, resides in the density-potential cross phase. It is produced by
the interplay between the inhomogeneities of magnetic shear and flow shear, but subject to a variety
of conditions and constraints. The regions of reversed flux tend to wash out if the turbulence consists
of closely spaced modes of different helicities, but survive if modes of a single helicity are relatively
isolated. The reversed flux becomes negligible if the electron density response is governed by
electron scales while the eigenmode is governed by ion scales. The relationship of these results to
experimentally observe flux reversals is discussed.2@®3 American Institute of Physics.
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I. INTRODUCTION siderably more sharply with flow shear than does the part of
the flux proportional to the absolute value of fluctuation am-

The suppression of turbulence IBXB flow shear has . ) . .
provided a compelling phenomenological paradigm for un_pI|tudes. While this work was based on a simple model of

derstanding transport barriers and enhanced confinement rgassive s_calar trans_port n a uniform magnetlc field, recent
gimes in fusion plasmasHowever, under closer scrutiny, it computa}pnal work in resistive ballooning mode turbulence
is not difficult to find measurements whose details appear téhows S'”_“'af behavidr. . i, -

be at odds with the suppression paradigm. One example | The simple model of Ref. 10 yields a positive definite

the observation in a variety of devices of fluctuation Ievelsf ux. Hence it cannot explain observations of locally reversed

that change only slightly or even increase in a region Oiﬂuxesf Nor!ethelgss, the flux of Ref. 10 has strong. spgtial
strong flow shear, but where transport is S’trong|ynonun|f'orm|ty, W|th-a narrow mixing layer whose width is
suppressed.’ A second example is the observation that in proportlon_al to the inverse of the shear strength, flanked by
regions of strong flow shear, the flux can actually revers@road regions of strongly suppressed cross phase and trans-
sign and become inward. This behavior appears as a reprB;ort- Given the strong spatial var|'a.t|0ns of cross phase in the
ducible feature of probe-induced shear layers in severatimple model, we ask what additional physics could cause
experiment$? and has also been observed in internally-the cross phase to change sigdy definition, the sign of the
induced shear layers in the H mode and the héliactoka- ~ flux resides in the cross phase, hence flux reversals occur
mak probe-induced shear-layers, the flux reversal occurs tdvhere the cross phase changes sign.
ward the inside edge of the shear layer, in a region of In this paper, we explore the above question by introduc-
positive shear, suggesting reproducible spatial struéture. ing a second, physically distinct inhomogeneity into the pro-
A key to understanding these phenomena is the crosgess of scalar advection by inhomogeneous mean flow. A
phase. The cross phase is the difference between phasesréfatively simple yet pervasive inhomogeneity is that of a
the two fluctuating quantities that govern fluctuation-inducedsheared magnetic field. The interplay of magnetic shear and
transport fluxes. The behavior of the cross phase in regionghiform flow shear is known to produce oscillations in the
of strong flow shear has only recently come under stddy. eigenmode envelope of the dissipative trapped electron mode
This contrasts with extensive and widely pursued examina(DTEM).** The eigenmode operator of the DTEM problem is
tions of the effect of flow shear on fluctuation amplitudé8. similar to the response of an electron density fluctuation
Where the cross phase has been measured, however, itvidiose evolution is subject to botBXB advection and a
observed that the cross phase can decrease in strongtgllisionally damped parallel flow* The behavior of the
sheared flow even when fluctuation amplitudes decrease onTEM eigenmode envelope, while suggestive, does not of
slightly, or increase. Recently, the cross phase was calculatédtself guarantee flux reversal. The spatial structure of the flux
for a generic scalar advected by a turbulEiXB flow with a  is governed by a spatial integral over the inverted density
linearly varying meart® In a strong shear regimishear rate  response operator. To work out such details we specialize the
>turbulent decorrelation rateit was found that, like the scalar evolution of Ref. 10 to electron density and introduce
experimental observatiods® the cross phase decreases con-magnetic shear through a collisionally damped parallel flow.
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The EXB nonlinearity is renormalized, and the evolution tions in the model and calculation make comparison with
operator is inverted using a Green function as in Ref. 10experimental details premature. Subsequent theory should
Asymptotic techniques for strong shear allow for evaluationcalculate the eigenmode structure self-consistently with the
of the spatial integral and yield a fairly simple expression forelectron density response. Moreover, other more potent, but
the flux. The electron density-potential cross phase is foundifficult-to-handle, inhomogeneities should be considered.
to reverse sign, independent of the eigenmode structure. These include the inhomogeneity of the grad-B and curva-
We are interested in the generic response of electroture drifts that figure in the eigenmode of toroidal ITG tur-
density to turbulent advection in a mean flow with linear bulence, and the strong variation of the shear in the highly
shear and a sheared magnetic field. However, to determirlecalized flows of probe-induced transport barrier experi-
whether the reversal of the cross phase carries over to rments. The strong variation of flow shear in highly localized
reversal in the flux, we must consider the eigenmode struclows may localize eigenmodes and isolate single helicities,
ture. For concreteness we examine a passing particle nonar organize the flux so that contributions from differing he-
diabatic electron response characteristic of edge conditionlicities produce a negative flux in the same region.
in the measurements cited above. It is convenient to treat the This paper is organized as follows. In Sec. Il the basic
nonadiabatic electron density as the electron contribution tonodel is presented and the electron density evolution equa-
ion temperature gradiediTG) turbulence. For ITG fluctua- tion is inverted to obtain the flux as the product of the fluc-
tions, the adiabatic electron density, which does not contribtuation magnitudes and an explicit expression for the cross
ute to transport, combines with ion dynamics to fix the radialphase. In Sec. Ill the cross phase expression is analyzed for
mode structure and growth rateThe nonadiabatic electron zero crossings and plotted as a function of radius. This is the
density fixes the particle transport, but makes little contriburincipal result of the paper. To anticipate the complete flux
tion to the mode structure and growth rate. The ITG eigenstructure, including the eigenmode structure, the assumed be-
mode, which weights the cross-phase response in the flux, Ravior of an ITG eigenmode is discussed. Implications of
centered in a region of positive flux. However, the eigen-these results for measured fluxes and future theory are dis-
mode is displaced from the rational surface by a scale lengthussed in Sec. IV.
characteristic of ion dynamics. The region of maximum den-
sity response is displaced by a scale length characteristic ®f MODEL AND CALCULATION
electron dynamics. As a result there is very little overlap of . _ .
density response and eigenmode. All contributions to the flux The electron parpcle flux 'S govemed by the cqrrelatlon
are highly suppressed, but the negative contributions ar f the elegtron density fluc_tuatlorm with the fluctuation of
more suppressed than positive contributions. On the otht N advectmg flow. For radial transport by a turbul&iXB
hand, if the eigenmode structure is controlled by eIectro‘re[ ow the flux is
dynamics as is the case with dissipative electrons governed T =—RefcB,V$Xzx)
by the Hasegawa—Wakatani mod®lthe eigenmode and
density response have significant overlap. The cross phase _ ip—lp =
reverses sign on the inside edge of a shifted eigenmode, Re%:u 16Bo kMo (X) §-ie—0(X)
yielding a region of weak negative flux to the inside of a
Iarger region of positive qux.. This structure represents the =—> cB, Ky P ol |6 olSINBc.0» (1)
contribution of the flux of a single helicity. If the turbulence k.o

has many helical modes whose spacing is smaller than modgnere the brackets indicate an average over slab coordinates
widths, the negative feature is washed out in the spectrur’g andz, o is the Fourier frequency arklis the wave vector
sum. For the combination of inhomogeneities under consida ihose directions and—cB(§1Vd>><z is the fluctuating
eration the shear must be large enough to affect electrogxg fiow expressed in terms of the electrostatic potengial
scales. _ o _ _ The factor|fy ,||¢_« .| represents the amplitude depen-
The spatial structure of the dissipative drift wave particlegence of the flux. The last equality defines the cross phase
flux described above and the strong shear threshold are ncgtk as the difference between phases of the scalar and the
unlike features observed in probe-induced shear layers. Hovisjectrostatic potential fluctuation. The coherence, which gen-

ever, this work suggests that where flux reversals are obs.4)ly appears as an additional factor in the last expression, is
served in experiment the turbulence may have a spatiallss med to be unity.

localized, quasicoherent feature that avoids the washing out 14 yescribe the electron density fluctuation we consider

of regions of negative flux by neighboring mode structures, ¢ojjisional regime consistent with ion temperature gradient
This may arise from a turbulent diffusivity that is not uni- y,rpylence with a collisional nonadiabatic electron density
form, or from a flow that is highly localized. Describing regnonsd? The electron density satisfies a continuity equa-

turbulent structure in regions of nonuniform diffusivity or 4 subject to a fluctuating collisional flow along the mag-
localized flow is a difficult problem, hence the present workatic field and the perpendicul&xB flow with mean and

is restricted to the case of uniform diffusivity and uniform fluctuating components. The parallel electron flow is gov-

flow shear. Accordingly, this work must be viewed as a plau-grneq by
sibility study, showing that an anomalous particle flux can g
have radially localized regions of negative sign, and indicat- duy _ B .
ing the conditions that favor reversals. Beyond that, limita- eMe gy + ViPe=eMneVi ¢ NeMeveivy, @
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where v is the electron—ion collision rate and other sym-where w«=—(cT./eBy) kynaldnoldx is the diamagnetic
bols have their usual meaning. For isothermal electrons anflequency. We renormalize E@5) using the eddy damped
weak electron inertia the parallel flow fluctuation is quasinormal Markovian closure, adapted to the inhomoge-
= — (To/NoMerei) ViN— (€/Mevgi) Vi b ,wheren, and T, are  neous nonlinearity. Details are given in Refs. 13 and 17.
the equilibrium electron density and temperature. With thisUnder this procedure the nonlinearity is expressed as an
expression for parallel flow the electron continuity equationamplitude-dependent diffusion and a nonlinéamplitude-

is dependentdamping rate. The resulting equation is
i Ving _le¢ T ) . g c VX2V _ oo gkixzh
at oy T g vo(X)W B, ¢Xz-Vn —i(w—=kyvpX)hy ,(X)+ voll2 K o(X)
= S VX z- Vng(x) 3 9p. 2 2
BO 0 ! - aDk,w&hk,w(X)—’— kydk,whk,w(x)
where the mearEXB flow vy(x) is a poloidal flow with edy
radial shear, and/, is the electron thermal velocity. Intro- =i(w—KkyoX— o, )T—"”, (6)
ducing the nonadiabatic electron densitfh.=n/ngy e
—eplT,, the evolution equation fdn, is given by where the turbulent diffusivitieB , anddy , are given by
she Vi_, ohg ¢C cz
I U_eiVH he+vo(X) Ty B—0V¢>>< z-Vh, Dk'w:k%' B_Sky(ky_ Ky) ks 0 )Rk wr b7 — (X)),
J d\ep ¢ c?(k,—k,) a¢ ¢
=—|=+vo(X) = | =+ =5 VXxXz-Vny(x). 4 = U L SO —Kmor
(at of )ay) Te  noBo ¢ o(X) @ dk,w—k%l B2k, EvalA X vl @)

The mean flow is assumed to have a linear variatigix)
=vo(Xg) T (X—Xg)vg, Wherexg is the position of a rational
surface. Hereaftex will indicate the distance from the ratio-

andRy» ., is the nonlinear response at wave numkiéek

/N —

—k’ and frequencyw'=w—o':

nal surface, i.ex—xg—X. We introduce a Fourier transform i Vf)k;jzx2

for both time and they direction. Note that in general, the Riror=| —lo"+ikyXvo+ —— >

flow does not vanish at the rational surface. However, the s

Doppler shift from this uniform flow componerk,v(xg) is d oo -t

adsorbed into the frequenay, i.e., w—ik,vo(Xg) — . The _5Dk”,w"5_(ky_ky) deror| ®)

turbulent frequency spectrumi, ,|? typically develops

the same Doppler shift. This means that when the sunNote that the response lt,w” has been expanded about the
over frequency in the flux expression is carried out, the Doptational surface for the mode w.

pler shift frequency dependence in the electron response Our objective is to invert Eq(6) to obtain the spatial
[inversion of the left-hand side of Eq4)] is evaluated at Structure ofhy ,(x) consistent with the source on the right-
the Doppler shifted peak of the frequency spectrumhand side and the spatial characteristics of the operator on
As a result, the Doppler shift cancels out, and EY). be- the left-hand side. Note that the EDQNM closure yields a
comes EKCBalky|ﬁk,w||¢fk|Sin 5k,wp1 where w,=w;(k) diffusivity that is nonuniform, with spatial variation arising

+iw(K), o (K) is the peak of the frequency spectrum for both from the potential and the operator of the nonlinear

wave numbeik in the plasma framew, (k) is the width of response, Eq8). Given this nonuniformity, inversion of Eq.
the spectrum, andip,|? is the magnitude of the frequency (6) is highly nontrivial. If the fluctuation spectrum has modes
spectrum at its peak value. A sheared slab is assumed for el different locations irx (corresponding to different rational

magnetic field, with the usual result that under the FourieSUTfaces such that the separation between adjacent modes is
transform,VﬁH—kf,xZ/Li, whereL. is the magnetic shear smaller than the spatial extent of individual modes, then the

scale length. nonuniformity in the compqnents dii ge_ts smoothed by the
The Fourier transform of Eq4) is sum over wave number. This situation is common when there
is magnetic shear, making the approximation of unif@m
. , gkf,xz standard approximation. Evenl[if is not uniform, the wave
~ o=k )Nk o () + — =7 N (%) number sum tends to mak® smoother tharh or R. In the
eils asymptotic limit of strong shear, this leads to singular layer
n 2 c _ikl ih structure inh, with the nonuniformity ofD a higher order
= Bo yTK o gy kKoo variation. The diffusivity can be treated as uniform in deter-
' mining leading order behavior. These arguments do not pre-
clude the possibility of a diffusivity with strong variation
under certain circumstances. For example, near low order
rational surfaces the distance between rational surfaces with
% (5) significant fluctuation activity can exceed the fluctuation
Te widths. In the vicinity of the low order surface the sum over

. , J
+|(ky_ky)hk7k',w7w’(Q_X(bk’,w’
=i(w—kyU6X—w*)
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wave number does little smoothing. This situation has been A T(12—N2) [ =N\ X-+iSA/2

studied in a limited fashion with the result that turbulence  G(x|x')= R - TW)

levels are essentially impervious to flow shEsBecause the 7 '

effect on the particle flux was not determined, this is an )

interesting area for future investigation. % U A X<+'SA/2) (15
We proceed with the inversion of E¢() for the case in 2’ Aly2 '

which the turbulent diffusivity is smooth. The inversion is

accomplished with a Green function, whereU is the parabolic cylinder functiol,T" is the gamma

function, andx~. (x.) is the largerismalle) of x andx’. In

terms of either of these expressions the flux is given by
hk,w(z)zf dx’
I'=-Re>, cBykyd_\ _,(X)N f dx’ G(x|x’
i(w—kyoX —w,) edy ,(X) % 0 Kyd-k-ulX)No — (xx)
X G(x|x") 5 T 9
k.o e (0—KkpoX' —w,) edy ,(X) 16
where the Green functio®(x|x’) satisfies Dy o Te
d? , , , Neither Eq.(14) or (15) allow the integral in Eq(16) to be
32 G = QOIG(XX") = = 8(x—x), (10 evaluated in terms of an analytic expression using tabulated
or simple functions. Therefore, we turn to asymptotic meth-
and ods to infer basic scalings. The relevant limit for significant
. suppression of transport is the limit of strong shear, or the
1 iSA\?2 o L oY e
Q(X)= x——) —A2)\|, (11)  asymptotic limitS—co. However, even in this limit, it is not
A 2 possible to evaluate the integral in E@6) using Eq.(14) or

is an effective potential obtained by completing the squarél®): because the appropriate asymptotic expansions are not

on the magnetic and flow shear inhomogeneities of the der{_eadily available in the reference literature. To proceed we
sity evolution, and return to Eqg. (100 and solve it approximately using

asymptotic methods.
S | ik)z,dkyw In the asymptotic limit of strong shea@—o. Hence
_{Z_' ( ” asymptotic solutions for the homogeneous equation are ob-
tained using WKB theory. From these solutions an
is an effective eigenvalue. The potential and Green functiomsymptotic expansion of the Green function is constructed by

)\:

Wsg Wsg

have a nominal, no-flow widtiA, whose form matching across the singularity, yielding

Dy Vel 2| M f X+iSA/2
= Tvae | (12 A2 A
Y G(X|x")~ — —

. . . x'+iSA/2\ [x'+iSA/2

is typical for an electron response in the presence of damped 29’

parallel electron flow. The potential is shifted Bj/2 along A A

the imaginaryx axis, whereSis the BDT shear strengtff, X- +iSA/2
kyvoA A

57D, /A% 13

X-+iSA/2
xexp{Jrg(T”, (S—=), (17

representing the ratio of th€eXB shearing rate,wg
=kyvoA, to the turbglent decorrelat.ion ralRy A2,  whereg’(y)=dg/dy, and
The Green function can be obtained from exact solutions

of the homogeneous equatidfy/dx?*—Qy=0, using either Y o
Hermite polynomials as eigenmodes of the homogeneous 9(y)=5(y" =M™ (18)
equation, or parabolic cylinder functions. The former gives
the expansion f(y)=(y*=N) " Yy?+(y? =) 2 (19
o With the asymptotic Green function of E¢L7) substituted
G(x|x’)=A2 (2n+\) 1t into Eq. (16), the integral can be evaluated using Laplace’s
n=0 method. The exponential functions @(x|x’) carry a factor
(X +iSA/2)? (X' —iSA*[2)? S%2, making the exponentials vary more ra!:)idly in the limit
><ex% 5A? exp{ SAFZ } of large shear than any other function@(x’) or the flux
integral of Eq.(16). For largeS the exponentials produce a
X+iSA/2 X' —iSA* /2 boundary layer ak’ = x that dominates the flux integral and
Hn( A ) n( A% ' (14) allows integration via Laplace’s method. The resulting ex-
pression for the leading order asymptotic flux in the limit of
while the latter gives a closed-form representation, large shear is
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cTe Noky egbk,w(x)‘2 0—w, X
o eBy 2 Te | [Dyo/A2 ~A
X2 iSx [ ikjde,\][x® iSx S iS[w ikjdy,\|?
—+——iS| —+ ———+ = —
A2 A g g A2 A 8 2\ g
x > , (S—). (20

_+_
A A 8 2

[xz iSx $? iS

The flux has spatial structure arising from the eigenmodepass through zero for a real value xf While the density
envelope| ¢>k,w(x)|2, and the remaining-dependent terms, response factor can be evaluated numerically and figures
which originate with the density responsg ,(X)/ ¢y .(X). showing the numerical evaluation appear below, it is useful
These two sources of spatial variation are separated in Edo obtain analytical approximations for the zeros, as these
(20). This result does not require that the eigenmode havavill provide the basis for scaling relations. We therefore ex-
smoother variation than the remaining terms in E20), amine the zeros of the seventh order polynomial that consti-
which represent the integrated density response. Rather, tifites the real part of the numerator of the density response,
requires the limit of large shear. §is not sufficiently large,
higher order terms in the asymptotic expansion of the inte-
gral might be required for accuracy. These bring in denvaRe{ .
tives of the eigenmode and hence sample eigenmode varia-
tion in the integral of Eq(16).

The cross phase and the possibility of flux reversals re-
side in the density response, because the eigenmode enve-
lope is positive definite. The spatial structure of the densityit is often true that R®, ,>ImD, . We will simplify the
response is considerably more complicated than it is for thenalysis of Eq(22) by assuming thab, ,, (and hence\) is
case in which the only homogeneity arose from the meaeal.
flow.1° The structure is in large measure nonlinear, and is not  Equation(22) is not factored because we must take the
captured by the quasilinear approximation. For comparisomeal part of complex factors. The seventh order polynomial
the quasilinear flux is with real coefficients that results from this operation is com-

CTe Nk, e¢ (x)[2 plicated but zeros can be found approximately by assuming
O kK, o . . .
'~-—-R Z S>1 and using asymptotic analysis. We expand the zeros as
foeB 2| T an asymptotic series irS, x=A(x?+ S 1xM)+3572x(?)
-1 +--+), and look first for zeros witl(®)~0O(1). Thelowest
, (21 order balance is

SA DA% AT A
x? iSx & |S< ikf,dk,w) 2

X w-w, |[x* iSx | w+ik§dk,w
I Wg Wg

1227 a T8 2 ey

Wg Wg

] =0. (22)

w—w, X X X2
” _SS l-s<-+ig5

X
6 0O

where °= (wveL2/V3K]) ands=k Vol o. 3 _[wi(k)—kZRed,,
The eigenmode envelope is aloso the spectrum of the SX?| —15x(?)%s*+ 535< 1 wy k ”=0,

electrostatic potential. We will model the frequency spectrum s (23

as a Lorentzian that peaks at a value o, (k) and has a

width w;(k). The frequency of the peak is the linear modewhere we recall tha_tws=SDk,w/A2 implies that ws

frequency shifted by the Doppler frequency of the flowxat  =0O(S). There are three order-unity zeros:

and a nonlinear frequené{.The width arises from the inco-

herent drive of fluctuations by mode coupling, and is related 1 wi(k)—ki Redy ,, 12
to ReD, ,, and Red, ,. With the frequency spectrum so x~0, *A—5 /S , o (S—=).
modeled, the sum oves in Eq. (21) can be carried out. The ) S (24)

flux is unchanged from Ed20), provided the sum is under-

stood to be ovek only, ¢y ,(x) is replaced bygy(X), the  The frequency spectrum linewidth typically represents a non-

amplitude of the Lorentzian, and in the remainder of the |inear damping process, making(k)<O0. If dy ., acts as a

expression is understood to bg(k) +iw;(k). saturation mechanism. Rg ,>0. In this case, the two ze-

ros from the quadratic factor form a complex conjugate pair,

and the only order-unity zero for rerlis x=0. The remain-

ing zeros are singular, i.e., they scale &40 a positive
The flux given in Eq(20) is well behaved for real values power. We assumg(®)~0(S) and find a lowest order bal-

of x; zeros of the denominator are all complex. The flux isance given by

positive asymptotically ag—o. If the flux reverses sign,

the factors in the numerator of the density response must SX9[(x(9)6+ 33?(x(9)4— 1 54(x(9)2]=0. (25)

Ill. CROSS PHASE CHARACTERISTICS
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-1}

FIG. 1. Full density response f@=3, o, /w;=0.3, w;/ws=-0.3, and FIG. 3. Full density response f&=10, w,/ws=0.3, w;/ws=—0.3, and
w, lwg=0.1. w, lwg=0.1.

x=AS, are essentially unaffected by flow shear. Taking
The three roots wit(®’=0 correspond to the order-unity =AS and substituting into the density response, we find that
roots of Eq.(24). The remaining four roots satisfx®)?> it is of order unity in this region. This behavior is also evi-
=S%(—3+,24)/8. From the upper branch there are two realdent in the figures, which shows the central minimum be-

Zeros, coming less deep &@increases, while the rightmost maxima
24—3\12 A is unchanged in magnitude.
X= iAS( - 8 ) ~ iES (26) This absence of scaling with the shear parameter in the

outer lobes contrasts with the case where inhomogeneity re-
and from the lower branch there is a complex conjugate paiisides solely in the flod? There, transport is unimpeded by
244312 flow shear only in a Kelvin mixing layer whose width de-
. (27)  creases as shear increases. Everywhere else transport is
8 strongly suppressed. The difference can be traced directly to
Under this arrangement of three real zeros, the densit{he advection of potentialio(x) d¢/dy, in the source of the
response is positive fok=As/2 and negative for €x nonadiabatic density. This term makes the source of the
<As/2. For negative values of the flux is first positive honadiabatic density go &/A~S?, canceling a facto§™?
between 0 and-As/2, and then negative for x=—As/2. from the inversion of the density response operator. In Ref.
The full density responsghe negative of everything to the 10, the flux was calculated directly from the full density
right of |e(X)/Te|? in Eq. (20)] is plotted in Figs. 1—4 for There was no factary(x) d¢/dy in the source of the density,
different values ofS and w;/w,. (Recall that the density and the invers&scaling of the operator inversion governed
response is 0n|y one component of a Fourier sum d&ver the reSBonse for Iarge If the flux is calculated from the full
Figures 1-3 represent parameters typ|ca| of ITG turbu|encéen8ityn as in Ref. 10, we obtain the same result as obtained
and Fig. 4 is typical of drift wave turbulence. The three realWith the nonadiabatic density. However, the additioSAl
zeros are clearly evident, as is their basic scaling ®iffhe ~ Scaling arising originally from the source of the nonadiabatic
structure of positive and negative regions described above @ensity has its origin in the inhomogeneity of the magnetic
also evident. The magnitude of the minimum and maximunshear damping. This inhomogeneity, and that of the flow, are
inside the region of the outermost zerox|&As/2) are in balance~precisely at=SA. Calculating the transport from
somewhat larger than those fbtf=As/2. The density re- the densityn, the magnetic shear damping term proportional
sponse is strongly suppressed by flow shear in the centr#p the potentia[second term of Eq3)] now enters the den-
region. Takingx~0 and substituting into the density re- Sity source as a term proportionalé. At x=SA this term
sponse, we find that it goes roughly §5*. On the other IS equal to the advective factor in the nonadiabatic source,

hand’ the outer maximum and minimum, which peak neaViElding the same flux. We conclude that the interaction of
the inhomogeneity of magnetic shear damping arishear

-10 -5 5 10 -0.5}

X==*IiAS

-1t

-1 -1.5}

FIG. 2. Full density response f@=6, o,/w;=0.3, w;/ws=-0.3, and FIG. 4. Full density response f@=3, o,/w;=0.3, w;j/ws=-0.1, and

w, lwg=0.1. w, lws=0.3.
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flow shear inhomogeneitgroduces a fundamental displace- will be is the fact that its overall scale is set by ion dynamics.
ment x=SA (where the frequencies of the two processesEvaluating the flux at this spatial position,

balance, at which the density response has a local maximum cT ed(X1a)|2 A 4
and is independent & This is an outcome of the linear flow r~-> e—e%ky — kipg(A—)
shear profile, and shows that the cross phase is sensitive to < eBo e ITe
the flow profile. This matter is discussed further in Sec. IV. 1
We now consider the eigenmode envelojg(x)|2, (1+ 7)) 7(Ls/Ly)
Which weights the density response. The eigenmode enve- 2 cT, ) ed(X1a) 2k2 , W veil-ﬁ 0
lope is also affected by the interplay of quadratic and linear =2 ano y T—e ypsm, (30

inhomogeneities of magnetic shear damping and flow shear.
However, the eigenmode potential is typically more compli-where Arg= ps(Ls/Ly) Y41+ 7;)"?72 is a nominal zero
cated thanQ(x), the effective potential of the density re- flow-ITG linear mode width obtained using~w, (1
sponsdEq. (11)]. We will consider two types of eigenmodes, + 7) 7. The zero-flow flux is
one whose scales are governed by ion dynamics, and one F:E(CTe/eBO)nOky|e¢/Te|2(wi/wr)
whose scales are governed by electron dynamics. For the
former we have in mind the eigenmode of the fluid ITG ~3(cTe/eBy)Noky|ed/ T,
instability in a sheared slab; for the latter, we consider dissiHence the factors to the right ¢é¢/T¢? in Eq. (30) are
pative drift waves as modeled by the Hasegawa—Wakataneduction factors in the electron response, or cross phase. For
equation. Both situations have complicated eigenmode probFEXTOR parameter$the reduction factor is O(10). The
lems whose solution and details are beyond the scope of thsrecise number is unimportant, given the crudeness of the
present theory, which emphasizes the nonlinear electron rexpproximations used in obtaining E(7). However, it is
sponse. However, the ITG eigenmode in the presence dflear that where there is a flow-shear-induced shift of the
strong flow shear has been studfédand we perform a eigenmode set by ion scales and a flow-shear-induced shift
simple analysis to make a crude estimate of the scales assof the electron density response set by electron scales, the
ciated with features of the numerically evaluated eigenmoddarge difference in these scales yields a very small overlap of
For the Hasegawa—Wakatani eigenmode we simply note thieinctions, and a correspondingly large reduction in the flux.
scale of the magnetic shear damping, and contrast the situ@he reduction is independent of shear becaygg~vy, as
tion to that of the ITG mode. discussed above. The reduction is so large that the flux is
In simple models, like that of dissipative tapped electronreduced below the levels of collision-driven fluxes, making
mode turbulencé? the balance of the linear flow shear inho- the oscillations of the electron density response inconsequen-
mogeneity and the quadratic magnetic shear damping inhasal.
mogeneity unequivocally determines the shift of the eigen- We now consider the eigenmode of the Hasegawa—
mode away from the mode rational surface. The eigenmod®@/akatani model. The eigenmode structure is governed by
of ITG turbulence is considerably more complicated, but alsalectron dynamics. The magnetic shear inhomogeneity is
has a shift that increases with flow shear stredgtiihe (V2ny/ve) VZ in both the electron density equation and the
eigenmode is governed by ion equations for vorticity, presequation that governs the electrostatic potential. Conse-
sure, and parallel flow, and adiabatic electronic according teuently scales are set by the electron parallel flow damping,

d?¢/dx®+P(x) =0, where both in the eigenmode envelope and the electron density re-
sponse. There are no unequal shifts set by the disparate

) 2 1-w (Ln/Ls)?X% pd scales of ion and electron dynamics. We anticipate that the
PO)=—kjps+ w+(1+ i)T’L w>— (yl7)(L,/Lg)?X?’ sign changes of the electron density response can emerge

(280  from the weighting by the eigenmode envelope. If the eigen-
mode is shifted byx=SA, the eigenmode preferentially

w=[o+kuwx]/o,,y is the ratio of specific heats, and  weights the positive lobe of the density response at the same
=T./T;. We note that fow,—c, the potentialP becomes |ocation. The negative lobe betwerr SA/2 andx=0 con-
independent ok. Consequently the shift cannot be found by tributes to the flux but with weaker weighting. Because the
simply taking the balance of the shear damping term and theigenmode shift is to the right of the rational surface, the
other flow shear-dependent term in the limit of strong sheardensity response structure to the left of the rational surface
However, if we assume that the numerator of the second terverlaps with the eigenmode tail, and therefore has very
is dominated by the flow shear, while the frequencies in thgmall magnitude. Details require a full eigenmode analysis,
denominators are dominated by the growth ratg(1  which will be undertaken in future work.
+ »;) 7, the balance of these terms yields a shift that is pro-  We have essentially been looking at a single wave num-
portional to the flow shear, ber k. The flux sums over wave number components of
|#¢]?. In a system with magnetic shear the eigenfunctions
whose wave numbers represent different helicities are cen-
tered at different radial locations. If the linear flow shear
variation extends over many rational surfaces, the eigenmode
The precise form of this shift or its scalings will not be of each helicity has a similar shape. The sum then represents
particularly important for the conclusions that follow. What a sum of fluxes with similar spatial structure, one for each

!

v

— 2| Y70
XITG_ps( o

Lg\?
(1+ ni)T(L—) . (29)

*
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helicity, each displaced by the distance between rational sur=SA. These effects arise from the interplay linear and qua-
faces. For shifted eigenmodes governed by electron scaledratic inhomogeneities. If the only inhomogeneity of the sys-
the smaller negative flux contribution betweed®¥<SA on  tem comes from the flow, the mixing layer width goes like
rational surface will be destroyed by positive flux contribu- Ax~S~1.2° In both cases the flow is the same. These differ-
tions of other helicities provided the separation between raences in shear scaling are due to the presence of the addi-
tional surfaces is smaller than the width of the single helicitytional inhomogeneity of the magnetic field. The apparent
flux structure g — Xg1=A. Negative flux contributions can universal nature of transport suppressione¥B flow shear
survive when this condition is violated, but in such a caseapplies only to homogeneous turbulence. In this regard trans-
that the diffusivity also starts to become nonuniform. It isport suppression is similar to the turbulent structure function,
more likely that the flux reversals observed experimentallywhose scaling symmetries are broken by inhomogeneity in
are associated with a localized region of strong shear. If aurbulence. This means that in the presence of inhomogene-
localized region of strong shear affects substantially a singléty, a property intrinsic to confined plasmas, the behavior of
rational surface, the eigenmode and density response on thaansport in the presence of flow is sensitive to the flow pro-
surface will be shifted away from the other unshifted eigen-ile. If the turbulence is inhomogeneous on the scale of the
modes with little overlap from differing helicities. Again, the flow variation, a low order Taylor-series expansion of the
diffusivity may be nonuniform in such a case. In the case offlow (e.g., to include only the linear or quadratic variajis
a nonuniform diffusivity the eigenmode structure can beinsufficient to determine general transport behavior. This is
modified in such a way as to defeat flow-shear-inducedrue for the cross phase, as illustrated by the comparison of
stabilization'® Because the shear-induced dephasing of thehe results of Ref. 10 with those of the present study, but is
transport cross phase is a different process, it is likely thailso true for turbulent amplitudes.
the cross phase and transport are reduced even though there A locally reversed flux obviously has implications for
is little change in fluctuation level. the particle balance and density profile evolution. Absent a
specification of sources and sinks, the present calculation,
which yields a flux with nonzero gradient, implies that the
mean density must evolve. Because the calculation assumes
This study was motivated by observations of localizeda fixed gradient, the calculated flux is therefore instanta-
regions of reversed particle flux in several experiméfits. neous, and subject to change on the transport time scale as
Because fluxes are typically thought of as being either unithe density evolves. A locally inward flux tends to flatten the
formly outward, or uniformly inward, we have sought to density profile, eventually stopping transport in that region.
determine if a locally reversed flux is possible under a simpleHowever, the experiments with observed flux reversals are
combination of inhomogeneities. If the only inhomogeneity presumably not in a relaxed steady state. To make complete
is that of uniform shear flow, the flux is uniformly outward. sense of them requires a knowledge of sources, sinks, colli-
If, however, a quadratically varying inhomogeneity from sional fluxes, and possible poloidal asymmetry, all of which
magnetic shear is included, a locally reversed flux is postie outside the scope of the present treatment. For example,
sible, subject to certain conditions and caveats. Locally rethe reversed anomalous particle flux in CHS is exceeded in
versed flux is not likely to be observable in ITG turbulence,magnitude by the neoclassical flux, yielding a net outward
due to the wide separation of electron response and eigeflux.® The inward flux observation in TEXTORassuming it
mode functions. It can occur in fluctuations with a singlecharacterizes stationary transport, and assuming that the
scale, such as collisional drift waves, provided the spectrunanomalous flux is larger than the neoclassical flux, suggests
is dominated by a narrow range of helicities. Such a quasithe need to check experimentally for poloidal asymmetry, or
coherent fluctuation spectrum may be favored by biasetb consider the possibility of some self-regulatory process of
probes, whose extremely strong flow shear may significantisource structure.
alter eigenmode structures and the fluctuation spectrum. In  Fluxes that proceed up the gradient must not violate ther-
addition to answering the direct question of whether a locallymodynamic constraints, which apply to diagonal transport
reversed flux is possible for a simple combination of inho-terms in the transport matrixThe particle flux driven by the
mogeneities, this work carries a variety of implications. density gradient is a diagonal tepntor ITG turbulence, a
With a second inhomogeneity in the system, the crosparticle flux up the gradient is possible because it is driven
phase and transport are sensitive to the shape of the floby free energy in the ion temperature gradient, an off-
profile. The shape of the profile potentially affects the spatialiagonal process. The only requirement is that the electron
structure of the flux, the width of the mixing layer, and shearcontribution to the growth rate must be smallFor colli-
strength scalings. For the system considered here, the lirsional drift wave fluctuations, particle transport is driven by
early varyingeEXB shearing rate and the quadratically vary- the density gradient. Consequently a uniformly inward flux is
ing magnetic shear damping rate are in balance at a displacpessible only if the growth rate is negativigzor example,
mentx=SA from the rational surface. This causes the sheareollisional drift wave fluctuations, stabilized by the electron
induced reduction of the density response function to beemperature gradient, would drive a transient flux up the gra-
canceled by a matching increase in the density source. Asdient while they are decaying from some initial finite-
consequence, at precisely the point where the density rexmplitude leve). For a localized flux reversal, the thermody-
sponse is maximum, it is independent of the shearingSate namic constraint is less stringent. Because the growth rate
Moreover, the width of the mixing layer goes likdax  can be related to a radial integral over the particle flux, a

IV. CONCLUSIONS AND IMPLICATIONS
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locally inward flux is possible, provided the radially inte- phase, and represent the direction in which future theoretical
grated flux is outward. This situation seems to be almostork should move.

guaranteed from the uniform shear flow considered here. The
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